Boundedness for a class of fractional Carleson type maximal operator
نویسندگان
چکیده
منابع مشابه
Boundedness of the Fractional Maximal Operator in Local Morrey-type Spaces
The problem of the boundedness of the fractional maximal operator Mα, 0 ≤ α < n in local Morrey-type spaces is reduced to the problem of the boundedness of the Hardy operator in weighted Lp-spaces on the cone of non-negative non-increasing functions. This allows obtaining sharp sufficient conditions for the boundedness for all admissible values of the parameters.
متن کاملThe (weak-l2) Boundedness of the Quadratic Carleson Operator
We prove that the generalized Carleson operator with polynomial phase function of degree two is of weak type (2,2). For this, we introduce a new approach to the time-frequency analysis of the quadratic phase.
متن کاملNecessary and Sufficient Conditions for the Boundedness of Dunkl-Type Fractional Maximal Operator in the Dunkl-Type Morrey Spaces
and Applied Analysis 3 For all x, y, z ∈ R, we put Wα ( x, y, z ) : ( 1 − σx,y,z σz,x,y σz,y,x ) Δα ( x, y, z ) , 2.5
متن کاملBmo-boundedness of the Maximal Operator for Arbitrary Measures
We show that in the one-dimensional case the weighted Hardy–Littlewood maximal operator Mμ is bounded on BMO(μ) for arbitrary Radon measure μ, and that this is not the case in higher dimensions.
متن کاملA Sharp Rearrangement Inequality for Fractional Maximal Operator
We prove a sharp pointwise estimate of the nonincreasing rearrangement of the fractional maximal function of f, M f, by an expression involving the nonincreasing rearrangement of f. This estimate is used to obtain necessary and suucient conditions for the boundedness of M between classical Lorentz spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Inequalities
سال: 2020
ISSN: 1846-579X
DOI: 10.7153/jmi-2020-14-45